

Spark Assisted Chemical Engraving (SACE)

An innovative technology with high potential for industry

L.A. Hof, <u>R. Wüthrich</u>

Electrochemical Green Engineering Group Department of Mechanical and Industrial Engineering Concordia University

Our Mission

Develop green advanced manufacturing technologies meeting the demand of the fourth industrial revolution

Our Expertise

Glass Machining

- Lab-on-Chip
- Multilayer chips
- Micro- to Macro-world interfaces

Post-Processing

- Multiscale electro-polishing
- Down to Ra of 50nm
- Broad range of materials including Titanium

- Complex parts
- Wide range of substrate materials
- Tuning surface wettability

Industry 4.0

- Batch Size 1 production
- Internet of Things (IoT)
- Ultra low-cost tooling

3

Electropolishing

Room Temperature Nanocoating

Internet of Things

Glass Micromachining

Applications

MedTech

- Lab-On-Chip
- Multilayer chips
- Micro- to Macro-world interfaces
- Micro-cutting

Watch Industry

- Watchglass cutting
- Inner parts
- Anti-counterfeiting marks
- Localized glass strengthening

Consumer Electronics

- Drilling for Trough Glass Vias
- Micro-cutting of glass including thin (<300μm)
- Micro-cutting of hardened glass

Rapid Prototyping

- Industrial R&D
- Fundamental Research
- Surface engineering
- Batch Size 1 production

SACE Principle

Machinable materials

Flexible Machining

Machining Specifications

Drilling	 150 µm < Ø < ∞ 0 < depth < several mm 1-5 s down to 700 µm vertical to tapered holes (0 to 90°) aspect ratio 1:10
Milling	 20 mm/min at 200 µm depth of cut several mm deep tolerances on channel width: 5 % aspect ratio 1:10
Micro-cutting	 10 - 20 mm/min depth: 4 - 5 mm
Polishing	 Very rough to very smooth surfaces are possible
	Concor

Micro-drilling of glass

1mm deep 1:5

Micro-milling of glass

2.5D machining of glass

Vac-High PC-Std. 10 kV x 130 _____ 200 μm 001331 Grid out N°12

SACE polishing (SACP)

Glass thickness: 500 µm

SACE polishing (SACP)

Idea-to-realization

Microfluidic for Medical Applications

Direct glass-to-glass bonding

Acoustic Microscope (Sonoscan®)

- Non-destructive testing
- Monitoring defects (e.g. voids, cracks)

➡ No defects

Microfluidic Connection

Industrial Production

SWISS MADE

Current industrial partners

Shilps Sciences

What we offer

THANK YOU

Electrochemical Green Engineering Group http://ege.encs.concordia.ca

